
page 260 Chapter XII Physics of materials 

 

CHAPTER XII  PHASE TRANSFORMATIONS II: 
     

    SOLID STATE TRANSFORMATIONS 
 

 
 
 

12.1 Introduction 
 

 

The previous chapter dealt with the thermodynamic formalism of phase transformations and details 

specific to the solidification process. This chapter mainly discusses transformations occurring in the 

solid state in two principal categories: transformations with diffusion and diffusionless cooperative 

transitions. 

 

Any phase transformation, regardless of whether it is a state transition (e.g., solidification, melting) 

or a solid-state transformation (e.g., allotropic transformation, precipitation, martensitic 

transformation), occurs by a rearrangement of atoms, ions, or molecules that starts from a metastable 

state and then reaches a lower energy state. Such state and phase transitions require overcoming an 

activation barrier to initiate the phase transformation, typically accomplished by thermal activation 

or applied stress. After overcoming this barrier, the difference in free energy between the metastable 

and lower energy (more stable) final states drives the transformation.  

 

By representing the variations in free energy 

as a function of a parameter ξ (internal 

variable), which allows for characterizing the 

different phases (for example, an interatomic 

distance), we note that these two quantities are 

essential in a phase transformation: 

 

 

 

driving force of the reaction, and the 

activation energy of the process 

 

 
 

Figure 12-1: Diagram showing the potential barrier to a generic phase transformation 

 

The formalism applied to the solid-state transformations is similar to the one developed for 

solidification. The main difference lies in the volume variations or crystallographic changes between 

the parent phase and the solid nucleus, often leading to internal elastic stresses. Otherwise, as for 

solidification, we can differentiate two kinds of nucleation. 



 
Phase transformations II: solid state transformations 
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General nucleation (or homogeneous) leads to a uniform distribution of nuclei in the volume. In 

contrast, localized germination (or heterogeneous) promotes nucleation in some sites more than 

others, such as grain boundaries or dislocations. 

 

The growth of these nuclei can be thermally activated or not (martensitic type). The thermally 

activated growth of a phase is regulated in general by diffusion. We can set apart: 

 

- Transformations resulting from long-range diffusion, e.g., precipitation and eutectoid 

transformations. 

- Transformations with short-range diffusion (e.g., across habit plane interface): allotropic 

transformations, order-disorder, etc. 

 

 

12.2 Transformations with diffusion 
 

12.2.1 Homogeneous nucleation 

 

For simplicity, in this section, we consider the nucleation of a phase β rich in atoms of type B in a 

matrix phase α rich in atoms of type A. As in the case of solidification, an interface must be created 

during nucleation, which costs energy. This energy contributes to the height of the potential barrier. 

This energy depends on the surface created S and the surface tension γ. In addition, we must add the 

elastic energy due to the elastic misfit between the parent phase (m) and the daughter phase (c).  

 

This energy, calculated per unit volume, is essentially (7.16): 

 

The sum of these contributions with the driving force of the transformation gives 

the variation in free energy: 

 

  

Figure 12-2: Critical radius of nucleation

(12.1) 
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In the case of a spherical precipitate with a radius of r, we get: 

 

  
 

From this relation, we can deduce the critical growth radius of the nucleus: 

 

  
 

and the free energy corresponding to the potential barrier is: 

 

  
 

Homogeneous nucleation rate 

 

We define the nucleation rate assuming the same arguments used for solidification in Chapter XI. 

Thus, as in § 11.4.2, the nucleation rate can be expressed as: 

 

  

where is the diffusion energy. 

 

The effect of the two terms of the activation energy is shown in Figure 12-3. 

Figure 12-3: Thermal activation of the nucleation rate

(12.2) 

(12.3) 

(12.4) 

(12.5) 
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Supposing that the chemical driving force varies linearly with temperature (as in equation 

(11.35)) whereas stays constant, equation (12.4) implies that the potential barrier varies 

quadratically with temperature (Figure 12-3b). Thus, at a temperature close to /, the exponential term 

regulates the nucleation rate, e.g., .  

 

When the temperature decreases, diffusion regulated by the activation energy is limited, and this 

exponential term becomes roughly . As a result, the nucleation is dominated 

by the term . Thus, the nucleation rate passes through a maximum at the 

temperature (Figure 12-3d). Interestingly, nucleation cannot begin until , where 

. 

 

Using (11.35) and replacing the melting point with the equilibrium temperature between the two 

phases  in that equation. If  and then . 

 

Homogeneous nucleation is - in reality - very rare in solids since the difference in structure between 

the parent phase and the daughter phase makes the term very large. However, we can have 

homogeneous nucleation for the formation of coherent precipitates. 

 

 

a) Example of homogeneous nucleation: Guinier-Preston zones 

 

Let's consider the example of the alloy Al-Ag. Its phase diagram is shown in Figure 12-4. The 

equilibrium of an Al-Ag 6% atomic (~20% weight) phase is realized at atmospheric pressure and: 

 

- At 500˚C, by one only phase with FCC structure, containing only 6% at. of Ag 

- At 300˚C, by a mix of two phases: with FCC structure, containing 0.8 % of atoms of Ag, 

and γ with HC structure, containing 59 % of atoms of Ag. 

 

The lever rule can calculate the proportion of each phase applied to the phase diagram in Figure 12-

4: 

 

    and 
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Figure 12-4: Phase diagram of Al-Ag 

 

The alloy does not evolve at equilibrium if the temperature variations are infinitely slow. However, 

from the two-phased state (α+γ), it is possible to follow the phase γ dissolution during the slow 

increase in temperature up to 500˚C, e.g., by measuring the electrical resistivity (Figure 12-5). 

 

 
Figure 12-5: Electrical resistivity as a function of temperature in an Al-Ag 20% alloy 

ρ as a function of T 

Decreasing T 
(2K/min) 

Increasing T 
(2K/min) 

Slope~=0.017 μ-cm 
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We observe an increase in the residual electrical resistivity due to the enrichment of the solid 

solution with Ag atoms during the dissolution of the phase γ (Matthiessen rule: , 

where , equation (4.44)). We do not find the prior resistivity if the alloy is rapidly cooled 

via water quenching. Instead, an excess of residual electrical resistivity is measured: .  The alloy 

is unstable, i.e., in a non-equilibrium state, and evolves with time, and the phase is 

oversaturated with Ag atoms, e.g., an oversaturated solid solution . Returning to the equilibrium 

state requires the formation of precipitates of the phase γ, which is richer in Ag than  and requires 

the thermally activated diffusion of Ag atoms. That is to say that thermal energy must be supplied to 

have the alloy evolve, which is referred to as annealing. 

 
Figure 12-6: Recovery of the electrical resistivity during isochronous annealings at room temperature 

 

It is possible to follow the precipitation and formation of phase γ by measuring the recovery of the 

excess electrical resistivity during annealing, which typically decreases resistivity. The resulting 

slope changes mark precipitation events (Figure 12-6). For example, this recovery is marked by two 

precipitation stages," which correspond to metastable equilibrium states of the alloy. By 

transmission electron microscopy and quenching the metal at each precipitation event, it is possible 

to observe the initiation of each precipitation stage and phase and the morphology of metastable 

precipitates (Figure 12-7). 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12-7: 3 kinds of precipitates appear during the precipitation of Al-Ag 20%: Guinier-Preston (a), γ  (b), and γ (c)

Restoring electrical 
resistivity during 
precipitation 
 
Isochronal hold 15min 
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The precipitation sequence of the alloy Al-Ag, starting from an oversaturated solid solution 

obtained by quenching, is the following: 

 

GP zones  

 

- The GP zones are the Guinier-Preston zones comprising spherical clusters, rich in Ag atoms, 

some tens of nanometers in size, with FCC structure and coherent with the matrix (Figure 12-

7a). Being coherent and a different crystal structure, they strengthen the material by providing 

barriers for matrix dislocation motion, i.e., they increase yield strength. 

- The ' precipitates (Figure 12-7b) appear as thin, flat layers in epitaxial correspondence with 

the (111) planes of the matrix. Their structure is hexagonal (HC), and their composition is 

close to Ag2Al. They have a coherent interface between their base planes (0001) and (111) 

matrix planes. Also, being coherent and of a different crystal structure, these precipitates 

strengthen the material by impeding dislocation motion (cutting the precipitate mechanism). 

- The γ precipitates are the stable form of the phase γ (HC, Ag2Al). They are incoherent (no 

continuity between their crystallographic planes and the matrix). Therefore, they tend to 

appear first at the grain boundaries (Figure 12-7c). 

 

 

Why these stages of precipitation? 

 

Even if the free energy of the phase γ is the lowest, the potential barrier for its formation is too high. 

Thus, the system prefers" to go through the intermediate stages, each characterized by lower 

activation energy. Therefore, we first have the formation of those precipitates that cause the least 

elastic misfit: the GP zones, which are coherent precipitates with the same structure as the matrix. 

Then, we have semi-coherent precipitates γ' and, finally, stable precipitates γ. The GP zones are 

formed by uniform nucleation, whereas the phases γ and γ' are formed on preferential sites, giving 

way to heterogeneous nucleation. The enrichment forms the γ' precipitates with Ag of the stacking 

faults formed in the aluminum by dissociating into Shockley partial dislocations. These (see § 7.6.1) 

are already nuclei of the HC phase as the γ' phase. The γ phase can be formed either from the γ' phase 

or on the grain boundaries with cellular growth. This last mechanism gives way to microstructures 

that are very similar to the growth of perlite. In the case of Al-Ag alloys, we would see the 

decomposition of the phase in α+γ. The diffusion through the matrix is replaced by the diffusion 

in the grain boundary, which is faster. The grain boundary moves together with the cell growth. 

 

 

        
Figure 12-8: The activation energy for the formation of each transition is minimal compared to the barrier to the 

        direct formation of the stable   phase. 
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12.2.2 Heterogeneous nucleation 

 

In the previous paragraphs, we hinted that heterogeneous nucleation is characterized by the presence 

of preferential sites, such as dislocations or grain boundaries, i.e., the presence of local defects.  

Since it is generally more energetically favorable due to the nucleation on defects, heterogeneous 

nucleation tends to be the most common form for solid-state transformations in materials. If we 

assume the creation of a nucleus as the annihilation of a defect, we gain in energy by and 

equation (12.1) becomes: 

 

  
 

For instance, in the case of nucleation at grain boundaries, a nucleus is favorable if it reduces 

the interface energy between two grains. 

 

  
 

where corresponds to the energy for the creation of a new interface αβ and corresponds 

to the energy lost by the suppression of part of the grain boundary αα (Figure 12-9). 

Figure 12-9: Surface energy of a nucleus developing at the interface between two grains boundaries 

 

Equations (12.6) and (12.7) are similar but include S terms representing the portion of αα surface that 

has not yet been affected by the nucleus. In this formalism, we can then provide an identical 

calculation for forming a solid nucleus on a surface (see equation (11.40)). However, we write it in 

terms of Young s law is written , and obtain the following: 

 

  
 

  
 

This result differs by a factor of 2 from the result obtained for solidification in (11.42). Thus, 

comparing (12.9) and (12.4), we get the following: 

 

 

(12.6) 

(12.7) 

(12.8) 

(12.9) 

(12.10) 
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As , if the interface energy ratio , then θ = 0, there is no barrier to the 

heterogeneous nucleation process anymore. In intermediate situations, the function S(θ) determines 

whether nucleation at the grain boundaries is favorable. 

 

Heterogeneous nucleation rate 

 

As for homogeneous nucleation, we can define a heterogeneous nucleation rate: 

 

  
Thus: 

 

  
 

We neglect possible differences in the diffusion energy between the preferential sites and the matrix. 

In the case of homogeneous nucleation, each atom is a potential nucleation site. Thus, if we consider 

the nucleation at the grain boundaries, the ratio where δ is the thickness of the interface, 

and D is the size of the grains. For example, by letting the grain size be 5 μm with a thickness at the 

joints of 0.5 nm, we have . Thus, the difference in the nucleation barriers  

justifies an exponential factor of the same order of magnitude. 

 

Remark 

 

The equations modeling the precipitate growth are similar to those describing solidification. Thus, 

precipitation kinetics can be determined and described in TTT diagrams, as discussed in § 11.4.3. 

 

 

12.3 Transformation kinetics: Avrami-Johnson-Mehl equation 
 

The kinetics for nucleation and growth during an isothermal transformation can be characterized 

phenomenologically by measuring the transformed phase fraction, f, as a function of time. This 

quantity varies between 0 (no nuclei) and 1 (fully transformed). Many factors determine phase 

fraction, f, such as the nucleation rate, the type of nucleation, the growth rate, etc. Thus, we can 

imagine that the nucleation occurs during all the transformation stages. In this case, the transformation 

is solely controlled by nucleation and growth rates. If, on the contrary, all nuclei are created at the 

beginning of the transformation, only the growth rate governs the transformation. For transformations 

forming cellular microstructures(§ 12.2.1a), the formation of daughter phases consumes the parent 

phases, and the cell overlap limits the transformation. In the following model, we suppose the 

nucleation rate I is constant. If the cells have a spherical shape and grow at a velocity v also assumed 

constant, the volume of a cell nucleated at t = 0 is the following:

(12.11) 

(12.12) 
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A cell nucleated at t = τ has a volume: 

 

  
 

The number of cells forming per unit volume between t = 0 and t = dτ is N = I dτ, and thus, if there is 

no overlap between the growing nuclei, the total transformed volume is given by: 

 

  
and by integrating, we find: 

  
This is valid for small volume fractions when we can neglect the overlap. We use this trick illustrated 

in Figure 12-10 to calculate what happens in the long time intervals. 

 

 
Figure 12-10: Real and virtual nuclei in a transforming matrix 

 

We consider all possible nuclei in the crystal volume V during an interval dt: their number is given 

by dn = NVdt. Some of these "real" nuclei (dnr) form, while the other "virtual" nuclei dnv do not 

develop because they can overlap with other transformed volumes:  

  

  
 

Since every nucleus has the same volume during the interval dt, we can write: 

 

  
 

where 𝑋𝑟and 𝑋represent the real and total nuclei volume fractions. Suppose 𝑑𝜌 is the number of 

nuclei that form per unit volume during the time interval 𝑑𝑡, 𝑑𝑛𝑟 =  𝑉𝑛𝑡 𝑑𝜌 and 𝑑𝑛 =  𝑉𝑑𝜌 where 

𝑉𝑛𝑡 is the volume of the non-transformed phase. 

(12.13) 

(12.14) 

(12.15) 

(12.16) 

(12.17) 

(12.18) 
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Thus: 

  
 

By integrating (12.19), considering that X(t = 0) = Xr (t = 0) = 0, we get: 

 

  

Equation (12.16) implies that and then: 

  

 
Figure 12-11: Transformed phase in a TTT diagram according to Avrami kinetics 

 

Equation (12.21) is called the Johnson-Mehl equation. It is used in general under Avrami s and 

Kolmogorov's form: 

 

  
 

where the exponent n (Avrami parameter) can vary between 1 and 4 and is related to the type and 

dimensionality of growth, e.g., Avrami exponent of 4 corresponds to homogenous nucleation with 3-

D growth (spherical particles). If the nucleation and growth mechanisms do not change, n is constant. 

On the other hand, the coefficient k depends on the nucleation and growth rates and is highly 

dependent on temperature. Avrami s equation is a semi-empirical relation. It enables us to calculate 

the transformed phase fraction at any point of a TTT diagram. 

 

(12.19) 

(12.20) 

(12.21) 

(12.22) 
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12.4 Examples of TTT diagrams 
 

In the following diagram (Figure 12-12), we can observe the isothermal transformation of a steel 

alloy. 

Figure 12-12: TTT diagram of a steel alloy 4340: 0.42C, 0.78Mn, 1.79Ni, 0.8Cr 

 

This diagram in Figure (12-12) was obtained by quenching the steel in its austenitic state with a bath 

kept at different temperatures. These curves can be generated by observing microstructure at various 

times during the isothermal annealing. We can also measure resistivity, specific heat, or other 

parameters from which the phase change can be tracked. We note the presence of two noses" in the 

diagram, one corresponding to the transformation of austenite → pearlite and the other to bainite 

formation. These two structures are a mixture of ferrite and Fe3C (F+C in Figure 12-12), although 

they have very different microstructures. Pearlite (see § 11.6.3) has a typical structure for a lamellar 

eutectic, while bainite microstructure morphologies are qualitatively different, comprising thin 

acicular carbides dispersed in a ferrite lamellar matrix. The transformation to pearlite is very slow, 

and new nuclei can develop ahead of the propagation. In bainite, ferrite grains nucleate and grow with 

a preferential orientation with respect to austenite grains. The bainite transformation occurs at a much 

lower temperature than conditions leading to pearlite formation. They require large undercoolings, 

and the transformation occurs almost instantaneously after the nucleation. At these lower 

temperatures, bainite forms thin laths more. Since the transformation kinetics at different cooling 

rates produce two distinct bainite morphologies, they are often referred to as upper and lower bainite 

(Figure 12-13). Upper bainite ferrite is free from carbides precipitating from the austenite phase 

between the ferrite plates. Lower bainite has a fine dispersion of plate-like carbides inside the ferrite 

plates. 
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The cooperative transformation of bainite introduces another kind of cooperative transformation, but 

without diffusion, the martensitic transformation. Marstentic phases are obtained if steel is quenched 

rapidly below the line . Under such rapid quenching, carbon atoms are trapped in the FCC lattice, 

producing a distortion that makes it tetragonal. We discuss these transformations in § 12.6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12-13: a) Bainite platelets in austenite. b) Upper bainite structure (nucleation at a grain boundary). c) Lower 

Bainite structure 

 

12.4.1 CCT diagrams (Continuous cooling transformation) 

 

The isothermal annealing process does not correspond to conditions achievable for thermal treatment. 

In general, we cannot control or know the cooling speed. The continuous cooling transformation 

curves (CCT diagrams) shown in Figures 12-14 describe the transformations during cooling from the 

austenite phase and allow engineers to empirically predict the microstructure and the hardness of 

steel. The contour lines of these diagrams represent the phases that form during continuous cooling 

with time and phase fractions for a given cooling speed. Experimentally, we can obtain these cooling 

a) 

b) c) 
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speeds by the Jominy test in which a standard cylinder (bar) sample is partially quenched in a water 

bath on one end to create a gradient in cooling rates. The portion close to the end is dipped into the 

water, thus having the highest cooling rate. We can record the temperature changes during cooling 

along the length of the bar using thermocouples to measure the effective cooling rates. After the 

quenching step, the bar is sliced into sections along its length to observe the microstructure and mount 

of phase present and measure its hardness (HRC = Rockwell C). These microstructure observations 

and hardness measurements are used to construct the empirical contours of the CCT curves. In steel 

samples, the highest quench rates produce a martensitic phase with high hardness compared to the 

softer phases of bainite, ferrite, and pearlite. 

Figure 12-14: The CCT diagram is obtained via the quenching of a Jominy sample 

 

 

12.5 Transformations without diffusion 
 

So far, we have considered transformations that imply compositional changes in the alloy, which need 

atomic diffusion over long distances, and diffusion is the primary driving mechanism supplying the 

growth of the new phase. Other solid-state transformations require only local atomic displacements 
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with distances shorter than interatomic spacing. Diffusion is unnecessary in those cases, or it can even 

act against forming the new phase if it is metastable. The martensitic phase transformation is the most 

technically significant among these diffusionless transformations. Martensitic microstructures 

provide both high strength and toughness. The scientific observations of martensite in the late 1800s 

and new methods for processing martensitic steels were primary technological advancements that 

brought the world into the modern age. These transformations are obtained through the coordinated 

local displacements of atoms in the crystal lattice. These displacements generally lead to a volume 

variation of the unit cell or the volume occupied by the atoms in the unit cell and to a rearrangement 

of these atoms. Thus, a transformation with an expansion (Bain distortion) or deviation (invariant 

plane strain) occurs, according to which phenomenon is dominant. When no volume change occurs, 

a family of atoms has a coordinated shuffle within the cell (Figure 12-15) or produces a shear. 

Figure 12-15: Transformation with a dilatation (a) and with a deviation (b) 

 

 

 

12.6 The martensitic transformation 
 

The martensitic transformation originates from one of the most important and widespread metallurgic 

processes: steel quenching. The empirical discovery of this process goes back many thousands of 

years, arising from the natural combination of iron with the carbon released by the embers left by the 

fires used to work iron. The oldest object showing a martensitic structure is a miner pickaxe found in 

Galilee dating back to the 12-13th century BC. In the case of steel, martensite is formed if the 

diffusion of carbon atoms is prevented by rapidly cooling the FCC phase (austenite). The carbon 

solute in austenite is trapped in the α ferrite. The BCC structure of ferrite distorts, resulting in a 

metastable phase oversaturated with carbon and a body-centered tetragonal structure (BCT). This 

phase is called martensite, and it was named after the Prussian researcher Martens, who first observed 

this phase in 1878. 
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12.6.1 Crystallography of the martensitic transformation 

 

Bain was the first to research a crystallographic model of the martensitic transformation in 1924. His 

model is based on observations that an FCC structure at high temperatures transforms into a body-

centered tetragonal lattice upon quenching (Figure 12-16). The structure at low temperatures tends 

towards a BCC lattice but is distorted. Without carbon interstitials, we expect a contraction of axis c 

and a dilatation of axes a and b. However, interstitial carbon atoms located on octahedral sites of the 

FCC phase expand the axis c, producing a body-centered tetragonal structure (Figure 12-16b). We 

correlate the amount of lattice distortion to the carbon content. The variation a and b lattice constants 

to c-axis expansion (Figure 12-17) as a function of the carbon content follow this empirical equation: 

 

  

 
Figure 12-16: Bain correspondence between FCC and BTC cells. The final tetragonal cell is obtained with a 

contraction by 18% of the Z axis and dilatation by 12% of the X and Y axis. 

 
Figure 12-17: Variation of the parameters a and c of the martensite tetragonal cell as a function of the carbon content 

 

(12.23) 
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The Bain transformation implies significant strains. If a martensite nucleus forms, it must overcome 

a significant potential barrier. However, the martensitic transformations occur practically without 

thermal activation, with propagation speeds of the front close to the speed of sound. Moreover, the 

interface with austenite remains coherent, with a clear continuity of the crystal planes. These 

observations imply that austenite and martensite must have a common interface invariant to this 

transformation. We call this interface the habit plane. 

 
Figure 12-18: The martensitic phase remains coherent with austenite. A bulge appears on the surface. 

 

We can give a geometrical representation of Bain transformation by considering the homothety (a 

transformation of space that dilates distances with respect to a fixed point) that transforms a sphere 

into an ellipsoid in a continuous medium. The unit sphere represents the FCC structure, and the 

ellipsoid represents the BCT phase. We have a contraction of the Z-axis and a dilatation of the X and 

Y-axis. As a result, two families of planes exist, AOC and BOD, which transform into the planes 

A OC and B OD,' with the vectors parallel to the plane ZY that remain invariant. The vectors (crystal 

directions) that form the AOB and DOC cones contract during Bain transformation, whereas those 

for AOD and BOC expand. The Bain transformation does not have an invariant plane with the two 

lattices, but only lines, those lines that define these cones. This new strain expands the X-axis and is 

needed to construct planes invariant to the transformation. As theoretically explained, for samples 

deformed by compression or traction from the motion of dislocations that shear the crystal, we offset 

the expansion in X by a suitable choice of the atomic glide planes. Figure 12-20 illustrates the shear 

(via a twinning deformation) geometry producing the transformation with invariant habit planes. As 

before, a family of planes (K2) is invariant to shear deformation. The vectors located in the planes on 

the left of the K2 contract and those on the right expand. The second invariant direction is given by a 

vector belonging to the plane AOC chosen previously, which gives the contraction (or expansion) in 

the X-axis direction. This can potentially introduce further deformation in the ZY plane, which is 

offset by modifying the choice of the plane AOC (Figure 12-21). 
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Figure 12-19: Strain of the FCC lattice according to Bain transformation. We notice a contraction of the Z-axis and an 

expansion of the X and Y-axis. Two families of planes exist, AOC and BOD, whose projected distances on Z and Y are 

invariant. e=ellipse s=sphere  

Figure 12-20: Shear on a plane called K1 in the direction d. The plane K2 is invariant 

 
Figure 12-21: Shear example. The planes of the daughter phase are expanded in the direction of X compared to the 

parent phase (a). A shear by an angle of 20˚ on an inclined line at 45˚ offsets the expansion but also produces an expansion 

along the Z axis (b) 

Parent Phase 

Daugther Phase 
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Generally, there is a more effective way to generate an invariant shear. This procedure is called 

twinning. Twinned crystals have a mirror symmetry or a rotation of 180˚. If we consider Figures 12-

20, the invariant planes K2 and K'2 provide the symmetry planes of the twins. However, crystal 

twinning does not correspond to a rotation of the atoms by 180˚. The metaphor of mirror symmetries 

corresponds only to the crystallographic structure. The actual displacement of each atom is less than 

an interatomic distance. As such, martensitic transformation proceeds quickly, reaching the speed of 

sound in materials. 

Figure 12-22: The shear or twinning can reduce the distortion between austenite and martensite considerably 

 

In short, the operations required to obtain a strain that preserves an invariant plane of the lattice 

comprise three operations: 

 

1) Distortion (Bain) to generate the new lattice symmetry, 

2) Shear leaves the cell untouched. This shear acts on the natural glide or twinning planes of the 

martensite, 

3) Rotation of the martensitic lattice to the new lattice in correspondence with the habit plane. 

 

The sequence of these operations can be represented mathematically by the multiplication of the three 

corresponding transformation matrixes: 

 

 P=RSB 

 

where B represents the Bain distortion in the volume, S is the twinning shear, and R is the rigid body 

rotation needed for lattice correspondence to the habit plane. 

 

 

12.6.2 Thermodynamics of the martensitic transformation 

 

Several alloys exhibit martensitic transformations. As in all phase transformations, a specific potential 

barrier has to be overcome to develop a nucleus of the new phase. The nucleus of the new phase can 

be assumed to have a flat, lenticular shape, which is a fair assumption from experimental microscopy 

observations in which martensite has long platelet-type morphologies (12-23).

(12.24) 
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Figure 12-23: Formation of platelets of martensite in Fe-Ni. a) b) Formation mechanism of the platelets. They can end 

on a grain boundary or another platelet. Comparison between the structure in laths c) and the structure in platelets d) e) 

 

The energy variation associated with the formation of the active nuclei is given by (see equation 

12.1): 

 

  
 

Considering nuclei with elliptic shapes, we can show by using Eshelby's theory (J.W. Christian, The 

Theory of Transformations in Crystals, Pergamon, 1965) that the elastic energy per unit volume is 

given by 

 

  

(12.25) 



 

page 280 Chapter XII Physics of materials 

and are functions of the Poisson ratio, c and a are the minor and major semiaxis of the 

ellipse, respectively, and and are the average dilatation and shear strains, respectively. 

Considering that, in general, in martensitic transformations, the volumetric strain is negligible 

compared to the shear , we can write that , where A is a function of the elastic 

constants. Equation (12.1) becomes: 

 

  
 

As in the case of transformations with diffusion, the propagation of the new phase is inhibited by the 

elastic energy and the surface energy stored in the new phase. Thus, the chemical energy must be 

sufficiently large. As already seen in § 11.4.1, the transformation is done at a lower temperature (

for Martensite start") than the equilibrium temperature between the two phases. The chemical energy 

necessary for the transformation is given by (11.35): 

 

  

where is related to the latent heat of the transformation . 

 
Figure 12-24: Transformation of a platelet of martensite in two phases: 1 - the instantaneous extension of the radius of 

the platelet until it reaches the grain boundary, 2 - increase of the thickness at elastic equilibrium 

 

In the case of an elliptical nucleus, the transformation can be represented by the diagram in Figure 

12-24. We suppose a newly-formed nucleus grows until it intersects the austenite grain boundary. 

The thickness increases at equilibrium with the elastic stresses. By differentiating (12.26) with respect 

to c, we get the equilibrium condition: 

 

 

(12.26) 

(12.27) 
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If we continue the heating cycle, the platelet of martensite remains in equilibrium with austenite until 

a temperature ( Austenite final") is given by the condition , under the constraint given 

by (12.27). We obtain: 

 

  
 

Stated in another way, acquiring a certain thickness stabilizes the platelet beyond . The cycle of 

apparition and disappearance of martensite shows some hysteresis. The hysteresis amplitude allows 

us to differentiate two kinds of behavior in martensite formation. The hysteresis ranges from 400 K 

to more in alloys such as Fe-C and Fe-Ni. Other alloys, such as Au-Cd and Ti-Ni, show hysteresis in 

the order of some tens of degrees. The strain amplitude, related to the phase transformation, justifies 

these hysteresis values. How the two kinds of martensite develop is profoundly different. The strains 

of martensitic materials with a high hysteresis are so big that martensite growth causes austenite's 

plastic deformation. The coherence of the interface is thus destroyed, and the martensite plate cannot 

grow beyond a specific size. The further development of martensite can only occur through the 

nucleation of new platelets. In such martensitic transformations, the interface energy term is 

dominant.  

 

For martensitic materials with low hysteresis (thermoelastic), a platelet grows in elastic equilibrium 

with the matrix until it reaches the physical boundaries with other platelets or austenite grain 

boundaries. Thus, heating thermoelastic martensite causes the same platelets to shrink and reform 

austenite again (Figure 12-24). In nonthermoelastic martensite, austenite also grows by nucleation-

growth in martensite, in which some amount of elastic energy is required to create a nucleus of 

austenite. This fact explains the large amplitude of the hysteresis. 

Figure 12-25: Hysteresis cycle in two martensitic alloys: Fe-Ni and Au-Cd 

 

Remark 

 

When heated, Martensite in Fe-C alloys loses its beneficial mechanical properties since carbon 

diffuses, causing carbide precipitation and strength reduction. The reduced strength results from the 

martensitic lattice structural changes that become similar to α ferrite. Thus, the transformation by 

heating occurs more from ferrite to austenite with the development of austenite by nucleation and 

growth.

(12.28) 
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12.7 Thermoelastic alloys: Shape Memory Effect and 

Pseudoelasticity 
 

12.7.1 Shape memory effect  

 

Thermoelastic alloys are particularly interesting for practical applications because of their astounding 

mechanical behaviors. For example, the stress field determines the equilibrium of a martensite platelet 

in its surroundings: it develops at an equilibrium between chemical and elastic energy. Therefore, this 

local field is modified when the external stress is applied, and we obtain a different configuration for 

martensite platelets. When thermoelastic martensite is deformed, the strain occurs by the propagation 

of twin boundaries through the movement of partial dislocations, similar to those created for stacking 

faults. Under applied, twinning dislocations with the highest Schmid factor move to twin or detwin 

(un-shear) the crystal (Figures 12-26 c and d). While a net shape change occurs, no volume change 

occurs as dislocations are not created nor annihilated during this type of twin boundary motion. Only 

those coherent twin boundaries produced by the martensitic transformation move and induce the 

strain. As such, those strains can be fully recovered upon heating and transforming back to the 

austenite phase. 

 

All the twins in a martensite platelet are formed, starting with the same austenite crystal. Thus, during 

the heating, regardless of the configuration of the deformed phase, the martensite reverts to the initial 

structure of the austenite parent phase. As a result, the material recovers its original macroscopic 

shape. Suppose the martensite deformation is so large that it creates dislocations or causes the glide 

of existing perfect dislocations not associated with the martensite twin; a permanent, unrecoverable 

strain results. In materials like TiNi alloys, up to 10% of the plastic deformation associated with the 

twin boundary motion can be recovered with this shape memory effect. The applications of this effect 

include dental appliances, medical probes, the opening of solar panels in space, etc. 

 
Figure 12-26: Mechanism of the memory effect. During the deformation, one type of twin converts into another. During 

the heating, all the twins return to the orientation of the austenite grain that generated them. 
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12.7.2 Pseudoelasticity 

 

Figure 12-27 shows the strain-stress curves of a Cu-34%Zn-3%Sn measured at different 

temperatures. We note that beyond the temperature As, even though strains exceed the elastic limit 

and are large plastic deformations for most metal alloys, the CuZnSn sample recovers its initial shape, 

either at the end of the cycle (244 K) or after a slight relaxation of the flow stress (297 K). The 

material exhibits a "rubber-like behavior" (pseudoelasticity) and superelastic behavior linked to the 

peculiar nature of martensite.  

 

Figure 12-27: Tensile test curves of an alloy Cu-34%Zn-3%Sn. Ms =221 K, Mf  =208 K, As =223 K, Af =235 K. 
 

In this "rubber-like" behavior, the motion of twin boundaries is fully reversible when releasing the 

applied stress, as opposed to the recovery process occurring in shape memory effect mechanisms. 

The physical origins of such behavior are not yet evident. However, the behavior is related to the 

appearance of internal elastic stresses during deformation, which causes the reconversion of the twins 

formed under the application of stress to revert to the original twin structure. 

 

This superelastic behavior is observed above the austenite finish temperature, Af. Martensite is thus 

a thermodynamically unstable phase. However, under applied stress, austenite transformed into 

martensite. When the stress is released, the thermodynamic situation changes again, and martensite 

becomes unstable. The induced plastic deformation for thermoelastic transformation to martensite is 

then recovered. This material under applied stress has an apparent plastic behavior, with almost an 

ideal plasticity beyond the elastic yield strength. When the stress level decreases, the material 

recovers its restoring force and eventually reverts to its initial shape. The superelastic strains can 

reach 20%. The applications of pseudoelasticity involve, for example, aerospace couplings, medical 

appliances and probes, eyeglasses with reversible deformation frames, and reinforcements for bras. 


